CHAPTEA
Alyebras linear Equations and functions

What do horses have to do with math?
A horse can gallop at a speed of 43 miles per hour. You can use the linear equation $d=43 t$ to find the distance d a horse gallops in a certain time t. In algebra, you will use variables and equations to describe many real-life situations.
You will solve problems about distance, rate, and time in Lesson 4-3.

GETTING STARTED

Diagnose Readiness

Take this quiz to see if you are ready to begin Chapter 4. Refer to the lesson number in parentheses for review.

Vocabulary Review

Complete each sentence.

1. When you replace the variable with a number that makes an equation true, you have \qquad the equation. (Lesson 1-5)
2. The first number in an ordered pair is the ? , and the second number is the ?. (Lesson 3-3)

Prerequisite Skills

Name the number that is the solution of the given equation. (Lesson 1-5)
3. $a+15=19 ; 4,5,6$
4. $11 a=77 ; 6,7,8$
5. $x+9=-2 ; 7,-11,11$

Graph each point on a coordinate plane. (Lesson 3-3)
6. $(-4,3)$
7. $(-2,-1)$

Add. (Lesson 3-4)
8. $-3+(-5)$
9. $-8+3$
10. $9+(-5)$
11. $-10+15$

Subtract. (Lesson 3-5)
12. $-5-6$
13. $8-10$
14. $8-(-6)$
15. $-3-(-1)$

Divide. (Lesson 3-7)
16. $-6 \div(-3)$
17. $-12 \div 3$
18. $10 \div(-5)$
19. $-24 \div(-4)$

Solving Equations Make this Foldable to help you organize your notes. Begin with a sheet of $8 \frac{1^{\prime \prime}}{2} \times 11^{\prime \prime}$ paper.

STEP 1 Fold

Fold the short sides toward the middle.

STEP 2 Fold Again

Fold the top to the bottom.

STEP3 Cut

Open. Cut along the second fold to make four tabs.

STEPA Label

Label each of the tabs as shown.

Noteali)

Chapter Notes Each time you find this logo throughout the chapter, use your Noteables ${ }^{\mathrm{m}}$: Interactive Study Notebook with Foldables ${ }^{\text {TM }}$ or your own notebook to take notes. Begin your chapter notes with this Foldable activity.

4=1

Writing Expressions and Equations

What You'll LEARN

Write verbal phrases and sentences as simple algebraic expressions and equations.

REVIEW Vocabulary

expression: a combination of variables, numbers, and at least one operation (Lesson 1-4)

WHEN am I ever going to use this?

COMICS Even these characters from Peanuts are using algebra.

1. Suppose the daughter is 12 years old. How old is the son?
2. What operation did you use to find the son's age? Explain.
3. Suppose the comic said that the son is twice as old as the daughter. If the daughter is 12 years old, how old is the son?
4. What operation did you use to find the son's age? Explain.

Words and phrases in problems often suggest addition, subtraction, multiplication, and division. Here are some examples.

Addition and Subtraction	Multiplication and Division		
plus	minus	times	divided
sum	difference	product	quotient
more than	less than	multiplied	per
increased by	less	twice	separate
in all	decreased by	each	

EXAMPLE Write a Phrase as an Expression

1. Write the phrase five dollars less than Jennifer earned as an algebraic expression.

- Your Turn write each phrase as an algebraic expression.
a. twice as many tomatoes as last year
b. 3 more runs than the Pirates scored

Remember, an equation is a sentence in mathematics that contains an equals sign. When you write a verbal sentence as an equation, you can use the equals sign $(=)$ for the words equals or is.

EXAMPLES Write Sentences as Equations

Write each sentence as an algebraic equation.

Sentence

(2) Five more than a number is 20 .

Equation

$n+5=20$
(3) Three times Jack's age equals $12 . \quad 3 a=12$
(1) FOOD It is estimated that 12.4 million pounds of potato chips were consumed during a recent Super Bowl. This was 3.1 million pounds more than the number of pounds of tortilla chips consumed. Write an equation that models this situation.

The equation is $12.4=3.1+t$.

Skill and Concept Check

1. OPEN ENDED Write a verbal sentence that translates into the equation $n+5=8$. 2. FIND THE ERROR Antonio and Julia are writing an algebraic expression
for the phrase 2 less than a number. Who is correct? Explain. FIND THE ERROR Antonio and Julia are writing an algebraic
for the phrase 2 less than a number. Who is correct? Explain.

$$
\begin{aligned}
& \text { Julia } \\
& n-2
\end{aligned}
$$

CUIDED PRACTICE

Write each phrase as an algebraic expression.
3. eight more than x
4. nine less than t
5. ten times as many hours
6. -15 divided by some number

Write each sentence as an algebraic equation.
7. The sum of a number and four
8. Twice a number equals -10 . is -9 .
9. POPULATION The median age of people living in the United States was 35.3 years in 2000. This is 2.4 years older than the median age in 1990. Write an equation that models this situation.

Write each phrase as an algebraic expression.
10. fifteen increased by t
12. nine dollars less than j
14. the product of r and 8
16. Emily's age divided by 3
11. five years older than Luis
13. a number less six
15. twice as many oranges
17. a number divided by -12

Write each sentence as an algebraic equation.

18. The sum of a number and four is -8 .
19. The product of a number and five is -20 .
20. Ten inches less than her height equals 26 .
21. Seven more than twice his age is 51 .
22. Two more than the number of cookies is 4 .
23. Ten times the number of students is 280 .
24. Five less than a number equals 31.
25. Three more than twice a number is 15 .

MONEY For Exercises 26 and 27, use the table.
The table shows the average lifespan of several kinds of paper currency in the United States. Let y represent the average lifespan of a $\$ 5$ bill.
26. Which lifespan can be represented by $2 y$?
27. Write an expression to represent the lifespan of a $\$ 50$ bill.
28. TOURISM The Washington Monument is 555 feet tall. It is 75 feet shorter than the Gateway to the West Arch. Write an equation that models this situation.

U.S.	
currency	
Kind	Llfespan (years)
$\$ 1$	1.5
$\$ 5$	2
$\$ 10$	3
$\$ 20$	4
$\$ 50$	9
$\$ 100$	9

Source: Federal Reserve System
29. CRITICAL THINKING If x is an odd number, how would you represent the odd number immediately following it? preceding it?

Spiral Review with Standardized Test Practice

30. MULTIPLE CHOICE A mechanic charges a $\$ 35$ initial fee and $\$ 32.50$ for each hour he works. Which equation could be used to find the cost c of a repair job that lasts h hours?
(A) $c=32.5+35 h$
(B) $c=35+32.5 h$
(C) $c=32.5-35 h$
(D) $c=32.5(35-h)$
31. MULTIPLE CHOICE Translate 12 more than d into an algebraic expression.
(F) $12 d$
(G) $d-12$
(H) $d+12$
(I) $12-d$

Divide. (Lesson 3-7)
32. $-18 \div 3$
33. $25 \div(-5)$
34. $-14 \div(-7)$
35. $72 \div(-9)$

GETTING READY FOR THE NEXT LESSON
PREREQUISITE SKILL Add. (Lesson 3-4)
36. $-8+(-3)$
37. $-10+9$
38. $12+(-20)$
39. $-15+15$

Simplify the Problem

Reading Math Problems

Have you ever tried to solve a long word problem and didn't know where to start? Try to rewrite the problem using fewer and fewer words. Then translate the problem into an equation.
-READ the problem.
Shopping networks on television are a popular way to shop. In addition to the cost of the items, you usually pay a shipping fee. Kylie wants to order several pairs of running shorts that cost $\$ 12$ each. The total shipping fee is $\$ 7$. How many shorts can she order with $\$ 55$?
-REWRITE the problem to make it simpler. Keep all of the important information but use fewer words.

REWRITE the problem using even fewer words. Write a variable for the unknown.
-TRANSLATE the words into an equation.

Kylie has $\$ 55$ to spend on some shorts that cost $\$ 12$ each plus a shipping fee of $\$ 7$. How many can she buy?

The total cost of x shorts at $\$ 12$ each plus $\$ 7$ is $\$ 55$.
$12 x+7=55$

SKILL PRACTICE

Use the method above to write an equation for each word problem.

1. FLYING Orville and Wilbur Wright flew their airplane called Flyer I in Kitty Hawk, North Carolina, on December 17, 1903. Wilbur's flight was 364 feet. This was 120 feet longer than Orville's flight. How far was Orville's flight?
2. MONEY Akira is saving money to buy a scooter that costs $\$ 125$. He has already saved $\$ 80$ and plans to save an additional \$5 each week. In how many weeks will he have enough money for the scooter?
3. ANIMALS The cougars that are found in the colder parts of North and South America are about 75 inches long. They are about 1.5 times longer than the cougars that are found in the tropical jungles of Central America. Find the length of the tropical cougar.
4. TRAVEL A taxi company charges $\$ 1.50$ per mile plus a $\$ 10$ fee. Suppose Olivia can afford to spend $\$ 19$ for a taxi ride from her apartment to the mall. How far can she travel by taxi with $\$ 19$?

$4=2 a$

What You'll LEARN

Solve equations using models.

REVIEW Vocabulary

equation: a mathematical sentence that contains an equals sign (Lesson 1-5)

Solving Equations Using Models

INVESTIGATE The scale at the right is balanced, and the bag contains a certain number of blocks.

1. Suppose you cannot look in the bag. How can
 you find the number of blocks in the bag?
2. In what way is a balanced scale like an equation?
3. What does it mean to solve an equation?

To solve an equation using models, you can use these steps.

- You can add or subtract the same number of counters from each side of the mat.
- You can add or subtract zero from each side of the mat.

Materias

- cups and counters
- equation mat

ACTIVITY Work with a partner.

Solve $x+2=5$ using models.

Therefore, $x=3$. Since $3+2=5$, the solution is correct.

Your Turn solve each equation using models.

a. $x+1=3$
b. $x+3=7$
c. $x+4=4$

Look Back You can review zero pairs in Lesson 3-4

Some equations are solved by using zero pairs. You can add or subtract a zero pair from either side of an equation without changing its value, because the value of a zero pair is zero.

ACTIVITY Work with a partner.

Solve $x+2=-1$ using models.

Remove all of the zero pairs from the left side. There are 3 negative counters on the right side of the mat.

Therefore, $x=-3$. Since $-3+2=-1$, the solution is correct.

Your Turn solve each equation using models.

d. $x+3=-2$
e. $x+4=1$
f. $-2=x+1$
g. $x-3=-2$
h. $x-1=-3$
i. $4=x-2$

Writing Math

1. How is solving an equation similar to keeping a scale in balance?
2. For any equation, how can you determine how many counters to add or subtract from each side?
3. Identify the property of numbers that is illustrated by a zero pair.
4. Identify the property of numbers that allows you to add or subtract zero without changing the value of a number.
5. MAKE A CONJECTURE Write a rule that you can use to solve an equation like $x+3=2$ without using models.

$4=2$
 Solving Addition and Subtraction Equations

What You'll LEARN

Solve addition and subtraction equations.

NEW Vocabulary

inverse operations

REVIEW Vocabulary

solve: finding a number that makes the equation true (Lesson 1-5)

WHEN am I ever going to use this?

SCIENCE Bottle-nosed dolphins and killer whales are the best-known species of the dolphin family. A killer whale, which can grow to a length of 9 meters, is 4 meters longer than a bottle-nosed dolphin.

1. What does x represent in the figure?
2. Write an expression to represent 4 meters longer than a dolphin.
3. Write an addition equation you could use to find the length of a dolphin.

You can use inverse operations to solve the equation $x+4=9$. Inverse operations "undo" each other. To undo the addition of 4 in the equation $x+4=9$, you would subtract 4 from each side of the equation.

EXAMPLE Solve an Addition Equation

Solve $x+4=9$.
Method 1 Use symbols.
$x+4=9 \quad$ Write the equation.
$x+4=9$
$-4=-4$
Subtract 4
from each side.
$x+4=9$

-4	$=-4$
x	$=5$
Simplify.	

The solution is 5 .

Method 2 Use models.

$x+4-4=9-4$

READING
in the Content Area
For strategies in reading this lesson, visit msmath2.net/reading.

Notealiles ${ }^{17}$

Key Concept: Subtraction Property of Equality

Words If you subtract the same number from each side of an equation, the two sides remain equal.

Symbols

Arithmetic
Algebra

$$
\begin{array}{r}
5=5 \\
-3=-3 \\
\hline 2=2
\end{array}
$$

$$
\begin{aligned}
x+2 & =3 \\
-2 & =-2 \\
\hline x & =1
\end{aligned}
$$

Noteables"

Key Concept: Addition Property of Equality

Words

Symbols
If you add the same number to each side of an equation, the two sides remain equal.

> Arithmetic

$$
\begin{array}{r}
5=5 \\
+3=+3 \\
\hline 8=8
\end{array}
$$

Algebra

$$
\begin{aligned}
& x-2=4 \\
& +2=+2 \\
& \hline x=6
\end{aligned}
$$

EXAMPLE Solve a Subtraction Equation

(2) Solve $1=x-2$. Check your solution.

Method 1 Use symbols.

$$
1=x-2 \quad \text { Write the equation. }
$$

$$
1=x-2
$$

$$
+2=+2
$$

Add 2 to each side.

$1=x-2$	
+2	$=+2$

Check $1=x-2$ Write the original equation.
$1 \stackrel{?}{\underline{=}} 3-2$ Replace x with 3 .
$1=1 \vee \quad$ This sentence is true.
The solution is 3 .

Checking Solutions

It is always wise to check your solution. You can often use arithmetic facts to check the solutions of simple equations.

Method 2 Use models.

Your Turn Solve each equation.

d. $y-3=4$
e. $r-4=-2$
f. $-9=q-8$

EXAMPLE Use an Equation to Solve a Problem

Look Back To review adding integers, see Lesson 3-4.
(3) SPORTS Tiger Woods won the 2002 Masters Championship with a final score of 12 under par, or $\mathbf{- 1 2}$. His scores for the first three rounds were $-2,-3$, and -6 . What was his score for the fourth round?

Words	The sum of the scores for all of the rounds was -12.
Variable	

$-2+(-3)+(-6)+s=-12$ Write the equation.
$-11+s=-12 \quad-2+(-3)+(-6)=-11$
$+11=+11$ Add 11 to each side.
$s=-1$ Simplify.

Check You can check the solution by adding. $-2+(-3)+(-6)+(-1)=-12$

Skill and Concept Check

1. Tell what property you would use to solve $x-4=-2$.
2. OPEN ENDED Write two different equations that have -2 as a solution.
3. Which One Doesn't Belong? Identify the equation that does not have the same solution as the other three. Explain your reasoning.
$x+3=4 \quad b+5=4 \quad 7+y=8 \quad 8+a=9$

CUIDTD PRACTICE

Solve each equation. Check your solution.
4. $n+6=9$
5. $m+5=3$
6. $-2=a+6$
7. $x-5=6$
8. $-1=c-6$
9. $s-4=-7$
10. GEOMETRY The sum of the measures of the angles of a triangle is 180°. Find the missing measure.

Practice and Applications

Solve each equation. Check your solution.
11. $a+3=10$
12. $y+5=11$
13. $x+8=5$
14. $y+15=11$
15. $r+6=-3$
16. $k+3=-9$
17. $s-8=9$
18. $w-7=11$
19. $q-8=-1$
20. $p-13=-2$
21. $x-5=-9$
22. $w-9=-12$
23. $34+r=95$
24. $64+y=84$
25. $-23=x-18$
26. $-59=m-11$
27. $-18+c=-30$

For Exercises See Examples
29. The sum of a number and 3 is -2 . Find the number.
30. If you decrease a number by 4 , the result is -5 . Find the number.

Solve each equation. Check your solution.
31. $a-3.5=14.9$
32. $x-2.8=9.5$
33. $r-8.5=-2.1$
34. $z-9.4=-3.6$
35. $n+1.4=0.72$
36. $b+2.25=1$

ROLLER COASTERS For Exercises 37 and 38, use the table.
37. Superman The Escape is 105 feet taller than Millennium Force. Write and solve an addition equation that you could use to find the height of Millennium Force.
38. The difference in the speeds of Superman The Escape and Millennium Force is 7 miles per hour. If Superman The Escape has the greater speed, write and solve a subtraction equation to find its speed.

Tallest Steel Roller coasters in North America	Height (feet)	Speed (mph)
Superman The Escape	415	$?$
Millenium Force	$?$	93
Titan	245	85
Goliath	235	85
Nitro	230	80
Source: www.rdb.com		

39. CRITICAL THINKING Suppose $x+y=10$ and the value of x increases by 3 . What must happen to the value of y so that $x+y=10$ is still a true sentence?

Spiral Review with Standardized Test Practice

40. MULTIPLE CHOICE The Sears Tower in Chicago is 1,454 feet tall. It is 204 feet taller than the Empire State Building in New York City. Use the equation $e+204=1,454$ to find the height of the Empire State Building.
(A) $1,250 \mathrm{ft}$
(B) $1,350 \mathrm{ft}$
(C) $1,450 \mathrm{ft}$
(D) $1,650 \mathrm{ft}$
41. GRID IN If $x+3=2$, what is the value of $2 x+5$?
42. ALGEBRA Write an expression for 6 inches less than w. (Lesson 4-1)

Divide. (Lesson 3-7)
43. $-15 \div 3$
44. $36 \div(-9)$
45. $-63 \div(-7)$
46. $-27 \div 9$

GETTING READY FOR THE NEXT LESSON

PREREQUISITE SKILL Divide. (Page 562)
47. $15.6 \div 13$
48. $8.84 \div 3.4$
49. $75.25 \div 0.25$
50. $0.76 \div 0.5$

$4=3$
 Solving Multiplication Equations

What You'll LEARN

Solve multiplication equations.

REVIEW Vocabulary

coefficient: the numerical factor of a multiplication expression (Lesson 1-4)

GTANOSON

Work with a partner.

Equations like $2 x=-6$ are called multiplication equations because the expression $2 x$ means 2 times the value of x. Follow these steps to solve $2 x=-6$.

Each cup is matched with 3 negative counters. So, $x=-3$.
Solve each equation using models.

1. $4 x=8$
2. $-8=2 x$
3. $3 x=3$
4. What operation did you use to find each solution?
5. How can you use the coefficient of x to solve $4 x=12$?
6. How can you use the coefficient of x to solve $-5 x=10$ without using cups and counters?

In the Mini Lab above, you matched each cup with an equal number of counters. This suggests the operation of division. You can use the Division Property of Equality to solve equations like $2 x=-6$.

Noteabiles

Key Concept: Division Property of Equality

Words

Symbols

If you divide each side of an equation by the same nonzero number, the two sides remain equal.

Arithmetic	Algebra	
$8=8$	$2 x=-6$	
$\frac{8}{2}=\frac{8}{2}$	$\frac{2 x}{2}=\frac{-6}{2}$	
4	x	$x=-3$

Notice that the division expression $8 \div 2$ can be written as the fraction $\frac{8}{2}$.

EXAMPLES Solve Multiplication Equations

(1) Solve $20=4 x$. Check your solution.

$20=4 x \quad$ Write the equation.
$\frac{20}{4}=\frac{4 x}{4} \quad$ Divide each side of the equation by 4.
$5=x \quad 20 \div 4=5$
Check $20=4 x \quad$ Write the original equation.

$$
20 \stackrel{?}{=} 4(5) \quad \text { Replace } x \text { with } 5 \text {. Is this sentence true? }
$$

$$
20=20 \vee
$$

The solution is 5 .
(2) Solve $-8 y=24$. Check your solution.
$-8 y=24 \quad$ Write the equation.
$\frac{-8 y}{-8}=\frac{24}{-8} \quad$ Divide each side by -8 .
$y=-3 \quad 24 \div(-8)=-3$
Check $\quad-8 y=24$ Write the original equation.

$$
-8(-3) \stackrel{?}{=} 24 \quad \text { Replace } y \text { with }-3 \text {. Is this sentence true? }
$$

$$
24=24
$$

The solution is -3 .

Your Turn Solve each equation.

a. $30=6 x$
b. $-6 a=36$
c. $-9 d=-72$

REAL-LIFE MATH

The equation $d=r t$ shows the relationship between the variables d (distance), r (rate or speed), and t (time).

ANIMALS The tortoise is one of the slowest land animals, reaching a top speed of about 0.25 mile per hour. Dragonflies, the fastest insect, can fly at a speed of about 18 miles per hour.
Source: Incredible Comparisons

EXAMPIE Use an Equation to Solve a Problem

(3) ANIMALS Refer to the information at the left. At this speed, how long will it take a tortoise to travel 1.5 miles?

Words	Distance is equal to the rate times the time				
Variables	d	$=$	r	-	t
Equation	1.5	$=$		$0.25 t$	

$1.5=0.25 t$ Write the equation.
$\frac{1.5}{0.25}=\frac{0.25 t}{0.25}$ Divide each side by 0.25 .
$6=t \quad 1.5 \div 0.25=6$
At this speed, it would take a tortoise 6 hours to travel 1.5 miles. Check this solution.

Skill and Concept Check

1. Tell whether -4 is a solution of $-3 x=-12$. Explain.
2. OPEN ENDED Write two different multiplication equations that have a negative integer as a solution.
3. FIND THE ERROR Jesse and Haley are solving $-5 x=30$. Who is correct? Explain.

$$
\begin{array}{rlr}
\text { Jesse } & \text { Haley } \\
-5 x=30 & -5 x=30 \\
\frac{-5 x}{-5}=\frac{30}{-5} & \frac{-5 x}{5}=\frac{30}{5} \\
x=-6 & x & =-6
\end{array}
$$

CUIOTD PRACTICE

Solve each equation. Check your solution.
4. $6 c=18$
5. $10 y=20$
6. $-6 s=24$
7. $-9 r=36$
8. $-8 z=-40$
9. $-11 r=-77$
10. $15=5 z$
11. $72=12 r$
12. The product of a number and -4 is 64 . Find the number.
13. If you multiply a number by 3 , the result is -21 . What is the number?

Practice and Applications

Solve each equation. Check your solution.

HOMEWORK HELP

14. $7 a=49$
15. $9 e=27$
16. $35=5 v$
17. $112=8 p$
18. $4 j=-36$
19. $12 y=-60$

For Exercises	See Examples
$14-19$	1
$20-25$	2
$26-31,38-39$	3

20. $48=-6 r$
21. $266=-2 t$
22. $-3 w=-36$
23. $-10 g=-100$
24. $-28=-7 f$
25. $-275=-5 s$
26. When a number is multiplied by -12 , the result is -168 . Find the number.
27. The product of a number and 25 is 1,000 . What is the number?
28. BABY-SITTING Gracia earns $\$ 5$ per hour when she baby-sits. How many hours does she need to work to earn $\$ 75$?
29. TRAVEL A Boeing 747 aircraft has a cruising speed of about 600 miles per hour. At that speed, how long will it take to travel 1,500 miles? Use the formula $d=r t$.

KITES For Exercises 30 and 31, use the following information.
In a simple kite, the length of the longer stick should be
1.5 times the length of the shorter stick.
30. Suppose the length of the longer stick is 36 inches. Write a multiplication equation to find the length of the shorter stick.
31. Solve the equation.

Solve each equation. Check your solution.
32. $4 x=9.2$
33. $9 y=13.5$
34. $-5.4=0.3 p$
35. $-9.72=1.8 a$
36. $3.9 y=18.33$
37. $2.6 b=2.08$

EARTHQUAKES For Exercises 38 and 39, use the following information.
Scientists determine the epicenter of an earthquake by measuring the time it takes for surface waves to travel between two places. Surface waves travel about 6 kilometers per second through Earth's crust.
38. The distance from Los Angeles, California, to Phoenix, Arizona, is 600 kilometers. Write a multiplication equation to find how long it would take surface waves to travel from Los Angeles to Phoenix.
39. Solve the equation.

ROLLER COASTERS For Exercises 40 and 41 use the table.
40. Without calculating, explain whether the Blue Streak or Magnum has the greater speed.
41. Find the speed of each roller coaster in feet per second.
42. CRITICAL THINKING

Solve $3|x|=12$.

Name	Track Length (ft)	Time of Ride
Blue Streak	2,558	1 min 45 s
Corkscrew	2,050	2 min
Magnum	5,106	2 min
Mean Streak	5,427	2 min 45 s

Source: www.rcdb.com

Review with Standardized Test Practice

43. MULTIPLE CHOICE A car is traveling at a speed of 75 feet per second. How many yards will the car travel in 90 seconds if it maintains the same speed?
(A) 75 yd
(B) 270 yd
(C) $2,250 \mathrm{yd}$
(D) $6,750 \mathrm{yd}$
44. MULTIPLE CHOICE Use the formula $A=b h$ to find the height of a parallelogram with a base of 34 millimeters and an area of 612 square millimeters.
(F) $20,800 \mathrm{~mm}$
(H) 578 mm
(G) 646 mm
(I) 18 mm

ALGEBRA Solve each equation. (Lesson 4-2)
45. $y+8=-2$
46. $x-7=-2$
47. $20=z+23$

ALGEBRA Write an algebraic expression for each phrase. (Lesson 4-1)
48. the product of -3 and y
50. 10 fewer students than last year
49. 5 years older than Rafael
51. twice as many runs as the Marlins scored

GETTING READY FOR THE NEXT LESSON
PREREQUISITE SKILL Subtract. (Lesson 3-5)
52. $8-(-2)$
53. $-7-7$
54. $-3-(-9)$
55. $-3-18$

4=4a

Problem-Solving Strategy A Preview of Lesson 4-4

Work Backward

What You'll LEARN

Solve problems using the work backward strategy.

Abstract

Alicia, how much money did we take to the movies today?

> Well, we spent $\$ 9$ on movie tickets. Then we spent $\$ 5$ on candy, and one half of what was left on popcorn. We have $\$ 3$ left. Let's work backward to figure it out.

Explore	We know we have $\$ 3$ left and the amounts spent. We need to find the initial amount we had.
Plan	Let's start with the end result and work backward.
Solve	We have $\$ 3$ left. Undo the half spent on popcorn.
	Undo the $\$ 5$ spent on candy. +5
	Undo the $\$ 9$ spent on movie tickets. $\quad+9$
	So, we initially had \$20. 20
Examine	Assume that we started with $\$ 20$. After buying movie tickets, we had $\$ 20$ - $\$ 9$ or $\$ 11$. We spent $\$ 5$ on candy, so we had $\$ 11$ - $\$ 5$ or $\$ 6$. Then we spent one half of the remaining money on popcorn, so we had $\$ 6 \div 2$ or $\$ 3$. So, our answer of $\$ 20$ is correct.

Analyze the Strategy

1. Explain when you would use the work backward strategy to solve a problem.
2. Describe how to solve a problem by working backward.
3. Write a problem that can be solved by working backward. Then write the steps you would take to find the solution to your problem.

Apply the Strategy

Solve. Use the work backward strategy.
4. MONEY Mia spent $\$ 4.50$ at the bakery and then spent four times that amount at the grocery. She had $\$ 12.80$ left. How much money did she have initially?
5. NUMBER THEORY A number is multiplied by 4 . Then 6 is subtracted from the product. After adding 5, the result is 15 . What is the number?

Mixed Problem Solving

Solve. Use any strategy.
6. PATTERNS Draw the sixth figure in the pattern shown.
7. FOOD Mateo goes to the grocery store and buys a ham for $\$ 24.98$ and a vegetable tray for $\$ 17.49$. There is no tax. He gives the cashier one bill and receives less than $\$ 10$ in change. What was the denomination of the bill Mateo gave the cashier?
8. TIME A shuttle bus schedule is shown. What is the earliest time after noon when the bus departs?

Departs	Arrives
8:55 A.M.	9:20 A.M.
9:43 A.M.	10:08 A.M.
10:31 A.M.	10:56 A.M.
11:19 A.M.	11:44 A.M.

9. GEOGRAPHY The land area of Texas is 267,277 square miles. This is about 5 times the land area of Arkansas. Estimate the land area of Arkansas.
10. NUMBER THEORY How many different two-digit numbers can you make using the digits 2,4 , and 9 if no digit is repeated within a number?
11. AGE Maya is two years older than her sister Jenna. Jenna is 5 years older than their brother Trevor, who is 9 years younger than their brother Trent. Trent is 17 years old. How old is Maya?

FOOD For Exercises 12 and 13, use the graph below.

12. How much more garlic was eaten in 2000 than in 1990?
13. Find the average monthly consumption of garlic in 2000.
14. VIDEOS Carlos rented 2 times as many DVDs as Ashley last month. Ashley rented 4 fewer than Greg, but four more than Grace. Greg rented 9 DVDs. How many DVDs did each person rent?
15. STANDARDIZED TEST PRACTICE
Which of the following is the most reasonable total amount for the items purchased?

```
(A) $17
B}$2
(C) $26
(D) $30
```

Pens	$\$ 2.09$
Ruler	$\$ 0.99$
Paper	$\$ 1.49$
Book	$\$ 14.99$
Candy	$\$ 0.49$
Glue	$\$ 0.89$
Folder	$\$ 1.19$
Erasers	$\$ 1.99$
Pencils	$\$ 1.87$

$4=4$

Solving Two-Step Equations

HidNos-0N Mini Lab

What You'll LEARN

Solve two-step equations.

Work with a partner.

A two-step equation has two different operations. Follow these steps to solve $2 x-3=1$.

Materials

- cups and counters
- equation mat

NEW Vocabulary
two-step equation

Arrange the cups and counters into two equal groups.

Each cup is matched with 2 positive counters. So, $x=2$.
Solve each equation using models.

1. $3 x+1=7$
2. $2 x-4=2$
3. $2 x+3=-3$

To solve two-step equations, "undo" the operations in reverse order of the order of operations. You are using the work backward strategy.

EXAMPLE Solve a Two-Step Equation

(1) Solve $3 x+2=23$. Check your solution.
$3 x+2=23$ Write the equation.
$-2=-2$ Subtract 2 from each side.
$3 x=21$ Simplify.

$$
\begin{aligned}
\frac{3 x}{3} & =\frac{21}{3} & & \text { Divide each side by } 3 . \\
x & =7 & & \text { Simplify. }
\end{aligned}
$$

The solution is 7. Check the solution.

EXAMPLES Solve Two-Step Equations

Solving Equations

When you solve a simple equation like $-2 y=10$, you can mentally divide each side by -2 .

Solve each equation. Check your solution.
(2) $-2 y-7=3$
$-2 y-7=3$ Write the equation.
$+7=+7 \quad$ Add 7 to each side.
$-2 y=10$ Simplify.
$\frac{-2 y}{-2}=\frac{10}{-2} \quad$ Divide each side by -2.
$y=-5 \quad$ Simplify.
The solution is -5 . Check the solution.
(3) $-11=4+5 r$
$-11=4+5 r \quad$ Write the equation.
$-4=-4 \quad$ Subtract 4 from each side.
$-15=\quad 5 r$ Simplify.
$\frac{-15}{5}=\frac{5 r}{5} \quad$ Divide each side by 5.
$-3=r \quad$ Simplify.
The solution is -3 . Check the solution.

- Your Turn solve each equation.

a. $4 x+5=13$
b. $-3 n-8=7$
c. $1+2 y=-3$

REAL-LIFE MATH

BOWLING Handicapping allows bowlers with varying skills to score about the same. Your handicap h is added to your score s, so your final score is $h+s$.
Source: www.bowl.com
Some problems start with a given amount and increase at a certain rate.

EXAMPLE Use an Equation to Solve a Problem

BOWLING Suppose you spend $\$ 6$ to rent bowling shoes at The Bowling Alley. Each game costs $\$ 3.50$. How many games can you bowl if you have $\$ 20$ to spend?

$$
\text { Let } x=\text { the number of games. }
$$

Cost of the shoes plus the cost of the games equals $\$ 20$.

$$
6+3.50 x=20
$$

$6+3.50 x=20$ Write the equation.

$-6=-6$

$$
3.50 x=14 \text { Simplify. }
$$

$$
\frac{3.50 x}{3.50}=\frac{14}{3.50} \text { Divide each side by } 3.50
$$

$$
x=4 \quad 14 \div 3.50=4
$$

You can bowl 4 games. Is this answer reasonable?

Skill and Concept Check

1. OPEN ENDED Write a two-step equation that has -2 as the solution.
2. FIND THE ERROR Jackson and Michele are solving $4+2 x=-8$.

Who is correct? Explain.

$$
\begin{aligned}
& \text { Jackson } \\
& 4+2 x=-8 \\
& 4+\frac{2 x}{2}=\frac{-8}{2} \\
& 4+x=-4 \\
& x=-8
\end{aligned}
$$

$$
\begin{aligned}
& \text { Michele } \\
& 4+2 x=-8 \\
&-4=-4 \\
& 2 x=-12 \\
& x=-6
\end{aligned}
$$

CuIDTD PRACTICE

Solve each equation. Check your solution.
3. $3 x+1=7$
4. $4 h-6=22$
5. $-6 r+1=-17$
6. $13=1+4 s$
7. Five more than three times a number is 23 . Find the number.

Practice and Applications

Solve each equation. Check your solution.

> HOMEWORK HELP
8. $3 x+1=10$
9. $5 x+4=19$
10. $2 t+7=-1$
11. $6 m+1=-23$
12. $-4 w-4=8$
13. $-7 y+3=-25$
14. $-8 s+1=33$
15. $-2 x+5=-13$
16. $3+8 n=-5$
17. $5+4 d=37$
18. $14+2 p=8$
19. $25+2 y=47$
20. $2=3 t-13$
21. $57=-8 x-7$
22. $18=9 d-18$
23. $4=4+7 f$
24. $21+11 x=-1$
25. $15 x+4=49$

For Exercises	See Examples
$8-11$	1
$12-15$	2
$16-19$	3
$26-29,38-41$	4
Extra Practice	
See pages $573,599$.	

26. Three more than the product of a number and 4 is 15 . Find the number.
27. Five less than three times a number is 1 . Find the number.
28. The product of 2 and a number is increased by 9 . The result is -17 . Find the number.
29. If you subtract 3 from twice a number, the result is 25 . Find the number.

Solve each equation. Check your solution.
30. $2 r-3.1=1.7$
31. $4 t+3.5=12.5$
32. $16 b-6.5=9.5$
33. $5 w+9.2=19.7$
34. $16=0.5 r-8$
35. $0.2 n+3=8.6$
36. $7.5 s-2=28$
37. $1.5 v-16=8$
38. MONEY MATTERS Joshua has saved $\$ 74$ toward a new sound system that costs $\$ 149$. He plans on saving an additional $\$ 15$ each week. How many weeks will it take Joshua to save enough money to buy the sound system?
39. WEATHER The temperature is $20^{\circ} \mathrm{F}$. It is expected to rise at a rate of 4° each hour for the next several hours. In how many hours will the temperature be 32° ?

TEMPERATURE For Exercises 40 and 41, use the following information and the graph.
Temperature is usually measured on the Fahrenheit scale (${ }^{\circ} \mathrm{F}$) or the Celsius scale $\left({ }^{\circ} \mathrm{C}\right)$. Use the formula $F=1.8 \mathrm{C}+32$ to convert from one scale to the other.
40. The highest temperature ever recorded in Virginia Beach, Virginia, was $104^{\circ} \mathrm{F}$. Find this temperature in degrees Celsius.
41. MULTI STEP The lowest temperature ever recorded in Virginia Beach was $-3^{\circ} \mathrm{F}$. Is this temperature greater or less than the lowest temperature ever recorded in Paris, France?

Data Update What are the record high and low temperatures for a large city near you? Visit msmath2.net/data_update to learn more.
42. CRITICAL THINKING Is there a temperature at which the number of Celsius degrees is the same as the number of Fahrenheit degrees? If so, find it. If not, explain why not.

piral Review with Standardized Test Practice

43. MULTIPLE CHOICE A taxi driver charges $\$ 2.00$ plus $\$ 0.80$ for each mile traveled. Which expression could be used to find the cost of a taxi ride if m miles are traveled?
(A) 2.80 m
(B) $2 m+0.80$
(C) $2+0.80 m$
(D) $2 m+0.80 m$
44. SHORT RESPONSE In 2004, the first-class postage rates were $\$ 0.37$ for the first ounce plus an additional cost for each ounce.

Weight (0z)	1	2	3	4	5	6
Postage (dollars)	0.37	0.60	0.83	1.06	1.29	1.52

What is the cost, in dollars, for a 12 -ounce letter?
ALGEBRA Solve each equation. Check your solution. (Lessons 4-2 and 4-3)
45. $4 f=28$
46. $6 p=-72$
47. $p-14=27$
48. $26=n+2$
49. DIVING Find the distance between two divers if one diver is 27 feet below sea level and the other diver is 13 feet below sea level. (Lesson 3-5)

GETTING READY FOR THE NEXT LESSON

PREREQUISITE SKILL Replace each with $<$ or $>$ to make a true sentence.
(Lesson 3-2)
50. $-3 \cdot-12$
51. $1 \bigcirc-1$
52. $7-18$
53. $-120 \bullet-30$

GHAPTE;

Vocabulary and Concepts

1. State the property of equality used to solve $a-7=-2$. (Lesson 4-2)
2. Write a two-step equation. Then solve your equation. (Lesson 4-4)
3. Define inverse operation and give an example. (Lesson 4-2)

Skills and Applications

Write each sentence as an algebraic equation. (Lesson 4-1)
4. The product of a number and 3 is -16 .
5. 10 less than a number is 45 .

Solve each equation. Check your solution. (Lessons 4-2, 4-3, and 4-4)
6. $21+m=33$
7. $a-5=-12$
8. $7 y=63$
9. $5 f=-75$
10. $-28=-2 d$
11. $-1.6 w=4.8$
12. $3 z-7=17$
13. $2 g-9=-5$
14. $-4 c-1=11$
15. FLYING An airplane is flying at an altitude of t feet before it increases its altitude by 1,000 feet. Write an expression for its new altitude. (Lesson 4-1)
16. GEOMETRY The sum of the measures of the angles of a triangle is 180°. Find the missing measure. (Lesson 4-2)

LAWN SERVICE For Exercises 17 and 18, use the following information.
Alex earned $\$ 326$ this summer mowing lawns. The total was 4 times more than what he earned last summer. (Lesson 4-3)
17. Write a multiplication equation to find how much Alex earned last summer.
18. Solve the equation.

Standardized Test Practice

19. MULTIPLE CHOICE Kim's time for the 5 K race was four minutes less than Tanya's time. If Tanya's time is t, which expression represents Kim's time? (Lesson 4-1)
(A) $4-t$
(B) $t-4$
(C) $t+4$
(D) $4 t$
20. GRID IN Last baseball season, Ryan had four less than twice the number of hits that Marcus had. Ryan had 48 hits. How many hits did Marcus have last season? (Lesson 4-4)

A Place To Practice your Math Skills

Math-O

- GETREADY

Players: two, three, or four
Materials: scissors, 26 index cards, and 4 different colored markers

- GET SETI

- Cut each index card in half, making 52 cards.
- To make a set of four cards, use the markers to put a different-colored stripe at the top of each card.
- Then write a different equation on each card. The solution of each equation should be 1 .
- Continue to make sets of four cards having equations with solutions of $2,3,4,5,6,0,-1$, $-2,-3,-4$, and -5 .
- Mark the remaining set of four cards "Wild."

- GO!

- The dealer shuffles the cards and deals five to each person. The remaining cards are placed in a pile facedown in the middle of the table. The dealer turns the top card faceup.
- The player to the left of the dealer plays a card with the same color or solution as the faceup card. Wild cards can be played any time. If the player cannot play a card, he or she takes a card from the pile and plays it, if possible. If it is not possible to play, the player places the card in his or her hand, and it is the next player's turn.
- Who Wins? The first person to play all cards in his or her hand is the winner.

$4=5$ Inequalities

WHEN am I ever going to use this?

What You'll LEARN

Solve inequalities.

NEW Vocabulary

inequality

MATH Symbols

$<$ is less than
$>$ is greater than
\leq is less than or equal to
\geq is greater than or equal to

BREAKFAST The table shows the nutrition requirements for a healthy breakfast cereal with milk.

1. Suppose your favorite cereal has 2 grams of fat, 7 grams of protein, 4 grams of fiber, and 3 grams of sugar. Is it a healthy cereal? Explain.
2. Is a cereal with 3 grams of fiber considered healthy? Explain.
3. Is a cereal with 5 grams of sugar considered healthy? Explain.

An inequality is a mathematical sentence that contains the symbols $<,>, \leq$, or \geq.

Inequalities					
Words	is less than	is greater than	is less than or equal to is at most	is greater than or equal to is at least	
Symbols	$<$	$>$	\leq	\geq	

Any number that makes the inequality true is a solution of the inequality. Inequalities may have many solutions. The solutions are shown by shading a number line.

EXAMPLES Graph Solutions of Inequalities

Graph each inequality on a number line.

- Your Turn Graph each inequality on a number line.
a. $x<-1$
b. $x \geq-2$
c. $x>0$
d. $x \leq 3$

Checking Solutions

You may also want to check $x=5$. The solution of the equation is the boundary between numbers that are solutions and numbers that are not solutions.

REALE CAREERS

How Does a Nurse Use Math?
Nurses use inequalities when they record test results like a person's blood pressure.

Research
For information about a career as a nurse, visit: msmath2.net/careers

To solve an inequality, follow the same steps you use to solve an equation.

EXAMPLES Solve One-Step Inequalities

(5) Solve $x+4>9$. Check your solution. Then graph the solution.
$x+4>9$ Write the inequality.
$-4=-4 \quad$ Subtract 4 from each side.
$x>5$ Simplify.
Check Try 6, a number greater than 5 .
$x+4>9$ Write the inequality.
$6+4 \gg 9$ Replace x with 6 . Is this sentence true?

$$
10>9 \vee
$$

The solution is all numbers greater than 5 .

B Solve $4 y \leq 8$. Graph the solution.
$4 y \leq 8 \quad$ Write the inequality.
$\frac{4 y}{4} \leq \frac{8}{4} \quad$ Divide each side by 4 .
$y \leq 2 \quad$ Check this solution.
The solution is all numbers less than or equal to 2 .

Your Turn Solve each inequality. Graph the solution.
e. $x+6>8$
f. $x-4 \geq-7$
g. $5 x<25$

EXAMPLE Use an Inequality to Solve a Problem

(1) HEALTH The formula $110+0.5 A<P$ is used to estimate whether a person has high blood pressure. In the formula, A is the person's age and P is the blood pressure. For which ages is a blood pressure of $\mathbf{1 2 0}$ considered high?

$110+0.5 A$	$<P$		Write the formula.
$110+0.5 A$	<120		Replace P with 120.
-110	$=-110$		Subtract 110 from each side.
$0.5 A$	<10		Simplify.
$\frac{0.5 A}{0.5}$	$<\frac{10}{0.5}$		Divide each side by 0.5.
A	<20		$10 \div 0.5=20$

A blood pressure of 120 is considered high for a person who is younger than 20 years old.

1. Draw a number line that shows all numbers less than or equal to -4 .
2. Writing Math Explain the difference between $x>3$ and $x \geq 3$.
3. OPEN ENDED Write two different inequalities whose solution is $x<2$.
4. FIND THE ERROR Courtney and Diego are writing an inequality for the expression at least 2 hours of homework. Who is correct? Explain.
```
Courtney
    n\leq2
```

```
Diego
h\geq2
```


CUTOTD PRACTICE

Graph each inequality on a number line.
5. $y>-3$
6. $x \geq 0$
7. $d<7$

Solve each inequality.
8. $x+3>-4$
9. $6 d \geq 24$
10. $3 x+8<15$

Practice and Applications

Graph each inequality on a number line.
11. $s>-4$
12. $y>3$
13. $t \geq-4$
14. $a \geq 3$
15. $h<2$
16. $g<-5$
17. $z \leq-1$
18. $p \leq 0$
19. $w \leq-6$

For Exercises	See Examples
$11-19$	$1-4$
$20-25,32-33$	$5-6$
$26-27,40-41$	7
Extra Practice	
See pages 573, 599.	

Solve each inequality.
20. $y+5<14$
21. $x+6<0$
22. $a-3 \geq-5$
23. $g-5>2$
24. $3 r \leq 18$
25. $6 u \geq 36$
26. $2 x+8<24$
27. $3 y+1 \leq 5$

Write the inequality for each graph.
28.

29.

30.

31.

Write an inequality for each sentence. Then solve the inequality.
32. Five times a number is greater than 25.
33. The sum of a number and 1 is at least 5 .
34. WEATHER A tropical depression has maximum sustained winds of less than 39 miles per hour. Write an inequality showing the wind speeds.
35. DRIVING In Ohio, you can get a driver's license if you are at least 16 years old. Write an inequality showing the age of all drivers in Ohio.

[^0]SPORTS For Exercises 36-39, use the graphic.
36. In which sport(s) are more than 400,000 children hurt?
37. In which sport(s) are at least 185,000 children hurt?
38. Of the sports listed, which have less than 300,000 injuries?
39. Write an inequality that describes the number of children hurt each year playing sports.

SHOPPING For Exercises 40 and 41, use the following information.
Suppose a pair of jeans costs $\$ 29$ and a necklace costs $\$ 8$. You have $\$ 70$ to spend on both.
40. Write an inequality to find how many pairs of jeans you can buy along with one necklace.
41. Solve the inequality.

USA TODAY Snapshots ${ }^{\circledR}$

42. CRITICAL THINKING A compound inequality is formed by two inequalities connected by the words and or or.

Type	Example	Solution	Graph
Intersection	$x>-3$ and $x<4$	Both inequalities are true. $\{x \mid-3<x<4\}$	
Union	$x<2$ or $x>5$	Ether inequality is true. $\{x \mid x<2 \text { or } x>5\}$	

Identify each compound inequality as an intersection or union. Then find and graph the solution.
a. $x>2$ and $x<7$
b. $x<-4$ or $x>4$
c. $x \geq-3$ or $x<-6$
d. $x \leq 10$ and $x>0$

Spiral Review with Standardized Test Practice

43. MULTIPLE CHOICE Which inequality is graphed on the number line?
(A) $x<3,000$ (B) $x \leq 3,000$
(C) $x>3,000$ (D) $x \geq 3,000$

44. MULTIPLE CHOICE Ayano has $\$ 26$ to spend. A hat costs $\$ 8$. Which inequality shows how much he can spend for a T-shirt?
(F) $s+8<26$
(G) $s+8>26$
(H) $s+8 \leq 26$
(I) $s+8 \geq 26$

ALGEBRA Solve each equation. Check your solution. (Lessons 4-2, 4-3, and 4-4)
45. $13=s+5$
46. $18 x=-54$
47. $2 q+6=-20$
48. $-7 q+4.6=-0.3$

GETTING READY FOR THE NEXT LESSON

PREREQUISITE SKILL Graph each point on a coordinate plane. (Lesson 3-3)
49. $(-4,2)$
50. $(3,-1)$
51. $(-3,-4)$
52. $(2,0)$

4-6a

 DHANDS-ON LAB
What You'll LEARN

Graph a function on a scatter plot.

Materals

- stopwatch
- grid paper
- uncooked spaghetti

Functions and Graphs
 INVESTIGATE Work as a class.

Have you ever been at a sporting event when the crowd does the "wave"? In this Lab, you will investigate how long it would take the students at your school to complete the "wave."

STEP1 Begin with five students sitting in a row.
STEP2 At the timer's signal, the first student stands up, waves his or her arms overhead, and sits down. Each student repeats the wave in order.

SIEP 3 When the last student sits down, the timer records the time in seconds.

STEP Repeat for 6, 7, 8, and so on, up to 25 students.

Writing Math

Work with a partner.

1. Graph the ordered pairs (number of students, time) on a coordinate grid like the one at the right.
2. Describe how the points appear on your graph.
3. Place one piece of uncooked spaghetti on your graph so that it covers as many of the points as possible. Predict how long it would take 30 students to
 complete the "wave." Make a prediction for 50 students.
4. Find a pattern in the data and use the pattern to predict how long it would take the students in your school to complete the "wave." Explain your reasoning.
5. A function describes the relationship between two quantities. In a function, one quantity depends on the other. Complete the sentence: The time it takes to do the "wave" depends on \qquad ? .

4=6
 Functions and Linear Equations

What You'll LEARN

Graph linear equations.

NEW Vocabulary

function function table domain range linear equation

REVIEW Vocabulary

ordered pair: a pair of numbers used to locate a point in a coordinate system (Lesson 3-3)

When am I ever going to use this?

FAST FOOD Suppose you can buy hamburgers for $\$ 2$ each.

1. Copy and complete the table to find the cost of 2,3 , and 4 hamburgers.
2. On grid paper, graph the ordered pairs (number, cost). Describe how the points appear on the grid.
3. What happens to the cost as the number of hamburgers increases?

Hamburgers		
Number	Multiply by 2	
1	2×1	

The total cost of the hamburgers depends on the number of hamburgers. A relationship where one thing depends on another is called a function. In a function, you start with an input number, perform one or more operations on it, and get an output number.

You can organize the input numbers, output numbers, and the function rule in a function table.

EXAMPLE Make a Function Table

MONEY MATTERS Suppose you earn $\$ 5$ each week. Make a function table that shows your total earnings after 1, 2, 3, and 4 weeks.

Input	Function Rule	Output
Number of Weeks	Multiply by 5	Total Earnings (\$)
1	5×1	5
2	5×2	10
3	5×3	15
4	5×4	20

The set of input values is called the domain, and the set of output values is called the range. In Example 1, the domain is $\{1,2,3,4\}$, and the range is $\{5,10,15,20\}$.

Input and Output
When x and y are used in an equation, x usually represents the input, and y usually represents the output.

Functions are often written as equations with two variables-one to represent the input and one to represent the output. Here's an equation for the situation in Example 1.

The solution of an equation with two variables consists of two numbers, one for each variable, that make the equation true. The solution is usually written as an ordered pair (x, y), which can be graphed.

EXAMPLE Graph Solutions of Linear Equations

(2) Graph $y=2 x+1$.

Select any four values for the input x. We chose $2,1,0$, and -1 . Substitute these values for x to find the output y.

x	$2 x+1$	y	(x, y)
2	$2(2)+1$	5	$(2,5)$
1	$2(1)+1$	3	$(1,3)$
0	$2(0)+1$	1	$(0,1)$
-1	$2(-1)+1$	-1	$(-1,-1)$

Four solutions are $(2,5),(1,3),(0,1)$, and $(-1,-1)$. The graph is shown above at the right.

- Your Turn Graph each equation.

a. $y=x-3$
b. $y=-3 x$
c. $y=-3 x+2$

Notice that all four points in the graph lie on a line. Draw a line through the points to graph all solutions of the equation $y=2 x+1$. The graph of $(3,7)$ is also on the line.
$y=2 x+1 \quad$ Write the equation.
$7 \stackrel{?}{=} 2(3)+1 \quad$ Replace x with 3 and y with 7 .
$7=7 \vee \quad$ This sentence is true.

So, $(3,7)$ is also a solution of $y=2 x+1$.
An equation like $y=2 x+1$ is called a linear equation because its graph is a straight line.

EXAMPLE Represent Real-World Functions

REAL-LIFE MATH

SKATEBOARDING

About one fourth of all skateboarding purchases are made by teenagers from 14 to 17 years old.
Source: Statistical Abstract of the United States

Step 2 Graph the ordered pairs and draw a line through the points.

Skill and Concept Check

1. OPEN ENDED Write an equation that has $(1,2)$ as a solution.
2. Writing Math Explain the relationship among input, output, and function rule.

CUIDED PRACTICE

Copy and complete each function table. Identify the domain and range.
3. $y=x-2$

x	$x-2$	y
1		
2		
3		
4		

4. $y=4 x$

x	$4 x$	y
-1		
0		
1		
2		

Graph each equation.

5. $y=x-1$
6. $y=-1 x$
7. $y=-2 x+3$

Practice and Applications

Copy and complete each function table. Identify the domain and range.
8. $y=x-4$

x	$x-4$	y
1		
2		
3		
4		

11. $y=-6 x$

x	$-6 x$	y
-1		
0		
1		
2		

9. $y=x+5$

x	$x+5$	y
1		
2		
3		
4		

12. $y=2 x-1$

x	$2 x-1$	y
1		
2		
3		
4		

10. $y=2 x$

11. $y=-2 x-2$

x	$-2 x-2$	y
-1		
0		
1		
2		

Graph each equation.
14. $y=x+1$
15. $y=x+3$
16. $y=x$
17. $y=-2 x$
18. $y=2 x+3$
19. $y=3 x-1$
20. $y=4 x-2$
21. $y=2 x+5$
22. $y=x+0.5$
23. $y=0.25 x$
24. $y=0.5 x-1$
25. $y=2 x-1.5$

Make a function table for each sentence. Then write an equation using x to represent the first number and y to represent the second number.
26. The second number is three more than the first number.
27. The second number is five less than the first number.
28. The second number is ten times the first number.

SPENDING For Exercises 29-31, use the graph.
29. Make a function table that shows the total average defense spending per person for $1,2,3$, and 4 days.
30. Write an equation in which x represents the days and y represents the total spending.
31. Graph the equation.

INTERNET For Exercises 32-34, use the following information.
An Internet provider charges $\$ 20$ each month.
32. Make a function table that shows the total charge for $1,2,3$, and 4 months of service.
33. Write an equation in which x represents months and y represents the total charge.
34. Graph the equation.

35. GEOMETRY The formula for the area A of a rectangle whose length is 5 units is $A=5 w$, where w is the width. Graph the function.
36. WRITE A PROBLEM Write about a real-life situation that can be represented by the equation $y=3 x$.

CRITICAL THINKING For Exercises 37-40, write an equation for the function shown in each function table.
37.

x	y
1	3
2	4
3	5
4	6

38.

x	y
2	6
4	12
6	18
8	24

39.

x	y
-1	4
0	0
1	-4
2	-8

40.

x	y
1	3
2	5
3	7
4	9

EXTENDING THE LESSON Not all equations have graphs that are straight lines. The graphs at the right show two nonlinear equations.

Graph each equation. Determine whether it is linear or nonlinear.
41. $y=x^{2}-1$
42. $y=x+1$
43. $y=2 x$
44. $x y=12$
45. $y=2 x^{2}$
46. $y=x^{3}-1$

Spiral Review with Standardized Test Practice

47. MULTIPLE CHOICE Choose the equation that is graphed at the right.
(A) $y=2 x$
(B) $y=x$
(C) $y=x-1$
(D) $y=2 x-2$
48. MULTIPLE CHOICE Which ordered pairs are solutions of the equation $y=2 x-4$?

(F) $(-2,-3),(0,2)$

$$
(H)(1,-2),(3,2)
$$

$$
\begin{aligned}
& \text { (G) }(-2,-1),(2,-3) \\
& \text { (I) }(-3,2),(0,-4)
\end{aligned}
$$

49. CIVICS To serve as a U.S. Representative, a person must be at least 25 years old and a citizen of the United States for at least 7 years. Write an inequality showing the age of a person who may be a U.S. Representative. (Lesson 4-5)

ALGEBRA Solve each equation. Check your solution. (Lesson 4-4)
50. $8=3 h-1$
51. $2 q+6=-20$
52. $32=-4+9 m$

GETTING READY FOR THE NEXT LESSON

PREREQUISITE SKILL Divide. (Lesson 3-7)
53. $-4 \div 2$
54. $10 \div(-5)$
55. $-12 \div(-4)$
56. $-16 \div 16$

$4=7$ Lines and Slope

When am I ever going to use this?

What You'll LEARN

Find the slope of a line.

NEW Vocabulary

slope

Link to READING

Everyday Meaning of Slope: ground that forms an incline, as in a ski slope

COST OF GASOLINE In recent years, the cost of one gallon of gasoline has varied from a low of about $\$ 1$ per gallon to a high of about $\$ 3$ per gallon. The equations $y=1 x$ and $y=3 x$ are graphed.

1. Which line is steeper?
2. What causes one line to be steeper?

3. Make a conjecture about where the line showing a cost of $\$ 2$ per gallon would be graphed. Explain.

The function table shows the total cost y of x gallons of gasoline at $\$ 2$ per gallon. The equation $y=2 x$ is graphed below.

y increases by 2 every time x increases by 1 .

The change in y with respect to the change in x is called the slope of a line. Slope is a number that tells how steep the line is.

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{2}{1} \text { or } 2
\end{aligned}
$$

The slope is the same for any two points on a straight line.

EXAMPLE
 Positive Slope

(1) Find the slope of the line.

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{4}{1} \text { or } 4
\end{aligned}
$$

The slope of the line is 4 .

When the value of y decreases as the value of x increases, the slope is a negative number. The slope of a line can also be a fraction.

EXAMPLES Negative Slope

(2) Find the slope of each line.

Slope A line with a positive slope rises to the right. A line with a negative slope falls to the right.

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{-2}{1} \text { or }-2
\end{aligned}
$$

The slope of the line is -2 .

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{-2}{3} \text { or }-\frac{2}{3}
\end{aligned}
$$

The slope of the line is $-\frac{2}{3}$.

- Your Turn Find the slope of the line that passes through each pair of points.
a. $(-2,-4),(1,5)$
b. $(0,3),(4,-1)$
c. $(2,2),(5,3)$

EXAMPLE Compare Slopes

Test-Taking Tip

Make a Drawing

Whenever possible, make a drawing of the problem. Then use the drawing to estimate the answer.

MULTIPLE-CHOICE TEST ITEM The table shows information about the rise and run of three ski slopes in Pennsylvania. Which has the steepest slope?
(A) Giant Boulder
(B) Giant Steps

Ski Slope	Rise (ft)	Run (ft)
Giant Boulder	750	4,000
Giant Steps	750	3,200
Gunner	750	3,360

(C) Gunner
(D) They have the same slope.

Read the Test Item

The rise corresponds to the vertical change, or change in y.
The run corresponds to the horizontal change, or change in x.

Solve the Test Item

Giant Boulder: $\frac{750}{4,000}$
Giant Steps: $\frac{750}{3,200}$
Gunner: $\frac{750}{3,360}$

All three fractions have the same rise. But Giant Steps has the shortest run. Therefore, its slope is greater. The answer is B.

Skill and Concept Check

1. Define slope.
2. Writing Math Explain how a line can have a negative slope.
3. OPEN ENDED On a coordinate plane, draw a line with a slope of $\frac{1}{2}$.

CUIOTD PRACTICE

Find the slope of the line that passes through each pair of points.
4.

5.

6. $(0,0),(1,3)$

Practice and Applications

HOMEWORK HELP

For Exercises	See Examples
$7-16$	$1-3$
$17-20$	4
Extra Practice	
See pages 574,59.	

12. $(-2,2),(-1,-2)$
13. $(-2,0),(1,3)$
14. $(3,4),(4,6)$
15. $(1,0),(2,-3)$
16. $(1,-1),(3,-2)$
17. $(0,0),(3,-2)$

EARNINGS For Exercises 17-19, use the

 table at the right.17. Suppose each of the functions in the table was graphed on a coordinate plane. Which line is steeper? Explain.
18. Find the slope of each line.

Hours Worked	Earnings (\$)	
	Greg	Monica
1	4	5
2	8	10
3	12	15
4	16	20

19. What does the slope of each line represent?
20. SKIIING Aerial skiers launch themselves into the air from a ramp like the one shown at the right. Is the slope of the ramp greater than one or less than one?

21. Which section of the graph shows the greatest increase in sales of camping gear? Describe the slope of this part of the graph.
22. What happened to sales between 1995 and 1996? Describe the slope of this part of the graph.
23. What happened to sales between 1997 and 1998? Describe the slope of this part of the graph.

CRITICAL THINKING A linear function has a constant slope.
Determine whether each function is linear or nonlinear.
24.

x	y
1	5
2	6
3	7
4	8

25.

x	y
1	3
2	4
3	6
4	9

26.

x	y
-1	1
0	0
1	1
2	4

Source: National Sporting Goods Association

EXTENDING THE LESSON You can graph a line if you know the slope and the coordinates of a point on the line. The figure at the right shows how to graph a line with slope 2 that passes through $(1,-1)$.
Graph each line with the given slope that passes through the given point.
27. slope $=3 ;(2,3)$
28. slope $=-1 ;(-3,2)$
29. slope $=-2 ;(-4,-1)$
30. slope $=5 ;(0,-4)$

Spiral Review with Standardized Test Practice

31. MULTIPLE CHOICE What is the slope of the line in the graph?
(A) 3
(B) -3
(C) $\frac{1}{3}$
(D) $-\frac{1}{3}$
32. GRID IN The graph of a straight line contains the points $(0,-3)$, $(1,2)$, and $(2, y)$. What is the value of y ?

Graph each equation. (Lesson 4-6)
33. $y=2 x-1$
34. $y=-3 x$
35. $y=x+4$
36. Solve $2 x+6<8$. (Lesson 4-5)

INTERDISGIPLINARY PROJEGT

The Wide World of Soccer

Math and Geography It is time to complete your project. Use the information and data you have gathered about countries where soccer is a favorite sport to prepare a Web page or poster. Be sure to include a graph with your project.
Weh Quest msmath2.net/webquest

Vocabulary and Concept Check

domain (p. 177)
function (p. 177)
function table (p. 177)
inequality (p. 172)
inverse operations (p. 156) linear equation (p. 178) range (p. 177)
slope (p. 182)
two-step equation (p. 166)
work backward strategy (p. 164)

State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence.

1. Inverse operations "undo" each other.
2. The words "more than" sometimes suggest the operation of multiplication.
3. An inequality is a mathematical sentence that contains the symbols $<,>, \leq$, or \geq.
4. When graphing $t<2$ on a number line, an open circle should be used to show that 2 is not included in the solution.
5. Slope is a number that tells how steep a line is.
6. An equation is called a linear equation if its graph is a point.
7. The solution of $m+5=12$ is $\underline{17}$.
8. The solution of $g-4=18$ is $\underline{22}$.
9. Six is the solution of $-8 w=48$.
10. The solution of $2 y \leq 18$ is $y \leq 16$.

Lesson-by-Lesson Exercises and Examples

4-1 Writing Expressions and Equations (pp. 150-152)

Write each phrase as an algebraic

 expression.11. the sum of a number and 5
12. six inches less than her height
13. twice as many apples
14. four times the number of dollars

Write each sentence as an algebraic equation.
15. Ten years older than Theresa's age is 23 .
16. Four less than a number is 19.
17. The quotient of 56 and a number is 14 .
18. Eight times the number of students is 64 .

Example 1 Write the phrase as an algebraic expression.
four times the price
Let p represent the price.
The algebraic expression is $4 p$.

Example 2 Write the sentence as an algebraic equation.
Six less than the number of cookies is 24 .
Let c represent the number of cookies.
The equation is $c-6=24$.

4-2 Solving Addition and Subtraction Equations (pp. 156-159)

Solve each equation. Check your solution.
19. $x+5=8$
20. $y+4=12$
21. $a+6=5$
22. $r+8=2$
23. $p+9=-4$
24. $d+14=23$
25. $s-8=15$
26. $t-6=7$
27. $n-1=-3$
28. $w-9=28$

Example 3 Solve $x+6=4$.
$x+6=4$
$\begin{aligned}-6 & =-6 \\ x & =-2\end{aligned}$ Subtract 6 from each side.
Example 4 Solve $y-3=\mathbf{- 2}$.
$y-3=-2$
$+3=+3$ Add 3 to each side.

4--3 Solving Multiplication Equations (pp. 160-163)

Solve each equation. Check your solution.
29. $7 c=28$
30. $9 y=45$
31. $-2 h=24$
32. $-8 w=72$
33. $10 y=-90$
34. $6 q=-18$
35. $-11 f=-121$
36. $-12 r=-36$

Example 5 Solve $-4 b=32$.
$-4 b=32$
$\frac{-4 b}{-4}=\frac{32}{-4} \quad$ Divide each side by -4.

$$
b=-8
$$

4-4 Solving Two-Step Equations (pp. 166-169)

Solve each equation. Check your solution.
37. $3 y-12=6$
38. $6 x-4=20$
39. $2 x+5=3$
40. $5 m+6=-4$
41. $10 c-8=90$
42. $3 r-20=-5$
43. Ten more than five times a number is 25 . Find the number.

4.-5 Inequalities (pp. 172-175)

Solve each inequality. Graph the solution.
44. $x+3<8$
45. $y+2>5$
46. $a+4 \geq 10$
47. $d+1 \leq 6$
48. $h-5 \geq 7$
49. $s-2 \leq 9$
50. $y+2<-3$
51. $m-7>-10$
52. $b+9 \leq-11$
53. $t-10 \geq-8$

Example 6 Solve $3 p-4=8$.
$3 p-4=8$
$+4=+4 \quad$ Add 4 to each side.
$3 p=12$
$\frac{3 p}{3}=\frac{12}{3} \quad$ Divide each side by 3.

$$
p=4
$$

Example 7 Solve $g+8 \leq 10$. Graph your solution.

$$
\begin{aligned}
g+8 & \leq 10 \\
-8 & =-8 \\
\hline g & \leq \\
\hline-5-4 & -3
\end{aligned} \text { Subtract } 8 \text { from each side. }
$$

4-6 Functions and Linear Equations (pp. 177-181)

Graph each equation.

54. $y=x+5$
55. $y=x-4$
56. $y=2 x$
57. $y=-1 x$
58. $y=3 x+2$
59. $y=-2 x+3$

MONEY MATTERS For Exercises 60-62, use the following infomation.
Angel earns $\$ 6$ per hour working at the Ice Cream Shop.
60. Make a table that shows her total earnings for working 3,5,7, and 9 hours.
61. Write an equation in which x represents the number of hours and y represents Angel's total earnings.
62. Graph the equation.

4-7 Lines and Slope (pp. 182-185)

Find the slope of the line that passes through each pair of points.
63.

64.

65. $(1,1),(2,0)$
66. $(2,3),(4,-1)$

Example 8 Graph $y=x+3$.

Select four values for x. Substitute these values for x to find values for y.

x	$x+3$	y
-1	$-1+3$	2
0	$0+3$	3
1	$1+3$	4
2	$2+3$	5

Four solutions are $(-1,2),(0,3),(1,4)$, and $(2,5)$. The graph is shown below.

Example 9 Find the slope of the line.

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{3}{1} \text { or } 3
\end{aligned}
$$

The slope of the line is 3 .

Practice Test

Vocabulary and Concepts

1. Explain the difference between an equation and an inequality.
2. Define function and give an example.

Skills and Applications

Write each phrase as an algebraic expression.
3. $\$ 5$ less than Matt has
4. 4 years older than Hana

Solve each equation. Check your solution.
5. $x+5=-8$
6. $y-11=15$
7. $9 z=-81$
8. $-6 k-4=38$

Solve each inequality. Graph the solution.
9. $p-4 \geq-3$
10. $j+5>2$

SHOPPING For Exercises 11 and 12, use the following information.

Suppose you want to buy 3 CDs and a new CD case that costs $\$ 7$. Each CD costs the same amount.
11. If you spend $\$ 46$, write an equation to find the cost of each $C D$.
12. Solve the equation.

Graph each equation.
13. $y=3 x-2$
14. $y=-2 x+4$
15. $y=0.5 x$

MOVIES For Exercises 16-18, use the following information.
A student ticket to the movies costs $\$ 3$.
16. Make a table that shows the total cost of 2,4 , and 6 tickets.
17. Write an equation in which x represents the number of tickets, and y represents the total cost.
18. Graph the equation.
19. Find the slope of the line that passes through $(-2,3)$ and $(-1,2)$.

Standardized Test Practice

20. MULTIPLE CHOICE Which line has a slope of 2 ?
(A)

(B)

(c)

(D)

PART 1 Moliple Ghoice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. Felicia's family wants to buy her a gift for $\$ 220$. Her parents will pay half. Her older sister will pay $\$ 50$. If her three other siblings split the remaining cost, how much will each pay? (Lesson 1-1)
```
(A) $20 (B) $60 (C) $130 (D) $170
```

2. Which is equivalent to 3^{6} ? (Lesson 1-2)
(F) 18
(G) 36
(H) $6 \cdot 6 \cdot 6$
(I) $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
3. Suppose you need 0.65 liter of water for a science experiment, but the container is measured in milliliters. How many milliliters of water do you need? (Lesson 1-5)
(A) 0.0065 mL
(B) 0.65 mL
(C) 6.5 mL
(D) 650 mL
4. If 18 is added to the data set below, which statement is true? (Lesson 2-4)
$16,14,22,16,16,18,15,25$
(F) The mode increases.
(G) The mean decreases.
(H) The mean increases.
(I) The median increases.
5. The stem-and-leaf plot shows the number of points scored by the Bears in each of their basketball games this

Stem	Leaf
1	89
2	02336889
3	01445689
4	012
	1 \| $8=18$ points

$$
\begin{array}{llll}
\text { (A) } 8 & \text { (B) } 9 & \text { (C) } 20
\end{array}
$$

6. Suppose points given by (x, y) in the table are graphed. Which statement is true about the graphs? (Lesson 3-3)
(F) The graphs of the points

x	y
-4	5
-5	10
-2	6

(G) The graphs of the points are located in Quadrant II.
(H) The graphs of the points are located in Quadrant III.
(I) The graphs of the points are located in Quadrant IV.
7. The temperature at 6:00 A.M. was $-5^{\circ} \mathrm{F}$.

What was the temperature at 8:00 A.M.
if it had risen 7 degrees? (Lesson 3-4)
(A) $-12^{\circ} \mathrm{F}$
(B) $-2^{\circ} \mathrm{F}$
(C) $2^{\circ} \mathrm{F}$
(D) $12^{\circ} \mathrm{F}$
8. The Tigers scored four more runs than the Giants scored. Which expression represents the number of runs the Giants scored if the Tigers scored n runs? (Lesson 4-1)
(F) $n+4$
(G) $n-4$
(H) $4-n$
(I) $4 n$
9. Which is the graph of the equation $y=3 x-2$? (Lesson 4-6)

PART 2 shons Response/Grad in

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.
10. The charge to enter a park is a flat amount per vehicle plus a fee for each person in the vehicle. The table shows the charge for vehicles holding up to 4 people.

Number of people	Charge (dollars)
1	2.00
2	2.50
3	3.00
4	3.50

What is the charge, in dollars, for a vehicle holding 8 people? (Lesson 1-1)
11. Evaluate $2\left(8+5^{2}\right)$. (Lesson 1-3)
12. The line plot shows how far in kilometers some students live from the school. How many students are represented in the plot? (Lesson 2-3)

:.. 13. The ordered pairs $(1,2),(6,2)$, and $(1,-5)$ are coordinates of three of the vertices of a rectangle. What is the y-coordinate of the ordered pair that represents the fourth vertex? (Lesson 3-3)
14. What number should replace y in the table?
(Lesson 3-6)

\boldsymbol{x}	$\mathbf{2 x - 5}$
1	-3
2	y
4	3
8	11
16	27

Question 13 This question does not include a drawing. Make one. It can help you quickly see how to solve the problem.
15. What value of x makes $x-2=-4$ a true statement? (Lesson 4-2)
16. Twice a number plus 7 is 35 . Find the number. (Lesson 4-4)
17. Winston earns $\$ 7$ an hour landscaping. He wants to buy a DVD player that costs $\$ 140$. Write an inequality for the least number of hours h he needs to work to reach his goal. (Lesson 4-5)
18. The graph of a line contains $(1,2)$ and $(3, y)$. What is the value of y if the slope of the line is 2 ? (Lesson 4-7)

PART 3 Extended Response

Record your answers on a sheet of paper. Show your work.
19. Pete's Paints charges a $\$ 20$ fee plus $\$ 7.50$ per hour to rent a paint sprayer.
a. Write an equation that could be used to determine the cost c of renting a paint sprayer for h hours.
b. Suppose you want to spend no more than $\$ 50$ to rent the paint sprayer. Write an inequality for this situation.
c. Solve the inequality in part b. Explain the meaning of the solution.
20. The distances traveled by a bicycle rider are given in the table. (Lesson 4-6)
a. Graph the ordered pairs.
b. Write an equation that relates the time t to the distance d.
c. Use your equation to predict the distance traveled in 3.5 hours.

Time (hours)	Distance (miles)
1	10
2	20
3	30
4	40
5	50

[^0]: Data Update What are the minimum ages for getting a driver's license in other states? Visit msmath2.net/data_update to learn more.

